Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
New Phytol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622801

RESUMEN

Unicellular organisms are known to exert tight control over their cell size. In the case of diatoms, abundant eukaryotic microalgae, two opposing notions are widely accepted. On the one hand, the rigid silica cell wall that forms inside the parental cell is thought to enforce geometrical reduction of the cell size. On the other hand, numerous exceptions cast doubt on the generality of this model. Here, we monitored clonal cultures of the diatom Stephanopyxis turris for up to 2 yr, recording the sizes of thousands of cells, in order to follow the distribution of cell sizes in the population. Our results show that S. turris cultures above a certain size threshold undergo a gradual size reduction, in accordance with the postulated geometrical driving force. However, once the cell size reaches a lower threshold, it fluctuates around a constant size using the inherent elasticity of cell wall elements. These results reconcile the disparate observations on cell size regulation in diatoms by showing two distinct behaviors, reduction and homeostasis. The geometrical size reduction is the dominant driving force for large cells, but smaller cells have the flexibility to re-adjust the size of their new cell walls.

2.
Nucleic Acids Res ; 51(17): 9369-9384, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37503837

RESUMEN

Bloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins. BLM is enriched in SGs upon different stress conditions and in an rG4-dependent manner. Also, we show that BLM unwinds rG4s and acts as a negative regulator of SG formation. Altogether, our data expand the cellular activity of BLM and shed light on the function that helicases play in the dynamics of biomolecular condensates.


Asunto(s)
G-Cuádruplex , Gránulos de Estrés , Humanos , ADN/química , RecQ Helicasas/metabolismo , ARN/genética , Gránulos de Estrés/metabolismo
3.
ISME Commun ; 3(1): 72, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37452148

RESUMEN

Phytoplankton produce the volatile dimethyl sulfide (DMS), an important infochemical mediating microbial interactions, which is also emitted to the atmosphere and affecting the global climate. Albeit the enzymatic source for DMS in eukaryotes was elucidated, namely a DMSP lyase (DL) called Alma1, we still lack basic knowledge regarding its taxonomic distribution. We defined unique sequence motifs which enable the identification of DL homologs (DLHs) in model systems and environmental populations. We used these motifs to predict DLHs in diverse algae by analyzing hundreds of genomic and transcriptomic sequences from model systems under stress conditions and from environmental samples. Our findings show that the DL enzyme is more taxonomically widespread than previously thought, as it is encoded by known algal taxa as haptophytes and dinoflagellates, but also by chlorophytes, pelagophytes and diatoms, which were conventionally considered to lack the DL enzyme. By exploring the Tara Oceans database, we showed that DLHs are widespread across the oceans and are predominantly expressed by dinoflagellates. Certain dinoflagellate DLHs were differentially expressed between the euphotic and mesopelagic zones, suggesting a functional specialization and an involvement in the metabolic plasticity of mixotrophic dinoflagellates. In specific regions as the Southern Ocean, DLH expression by haptophytes and diatoms was correlated with environmental drivers such as nutrient availability. The expanded repertoire of putative DL enzymes from diverse microbial origins and geographic niches suggests new potential players in the marine sulfur cycle and provides a foundation to study the cellular function of the DL enzyme in marine microbes.

4.
Aging (Albany NY) ; 15(7): 2395-2417, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36996500

RESUMEN

Cellular senescence is a stable state of cell cycle arrest that regulates tissue integrity and protects the organism from tumorigenesis. However, the accumulation of senescent cells during aging contributes to age-related pathologies. One such pathology is chronic lung inflammation. p21 (CDKN1A) regulates cellular senescence via inhibition of cyclin-dependent kinases (CDKs). However, its role in chronic lung inflammation and functional impact on chronic lung disease, where senescent cells accumulate, is less understood. To elucidate the role of p21 in chronic lung inflammation, we subjected p21 knockout (p21-/-) mice to repetitive inhalations of lipopolysaccharide (LPS), an exposure that leads to chronic bronchitis and accumulation of senescent cells. p21 knockout led to a reduced presence of senescent cells, alleviated the pathological manifestations of chronic lung inflammation, and improved the fitness of the mice. The expression profiling of the lung cells revealed that resident epithelial and endothelial cells, but not immune cells, play a significant role in mediating the p21-dependent inflammatory response following chronic LPS exposure. Our results implicate p21 as a critical regulator of chronic bronchitis and a driver of chronic airway inflammation and lung destruction.


Asunto(s)
Bronquitis Crónica , Neumonía , Ratones , Animales , Células Endoteliales/metabolismo , Bronquitis Crónica/genética , Lipopolisacáridos/toxicidad , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neumonía/metabolismo , Ciclo Celular , Senescencia Celular/fisiología , Inflamación
5.
Parasit Vectors ; 16(1): 14, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639683

RESUMEN

BACKGROUND: Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS: We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS: We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS: Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.


Asunto(s)
Genes Protozoarios , Plasmodium falciparum , Humanos , Antimaláricos/metabolismo , Malaria , Plasmodium falciparum/genética , Reproducción
6.
Nat Commun ; 14(1): 480, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717559

RESUMEN

Diatoms are unicellular algae characterized by silica cell walls. These silica elements are known to be formed intracellularly in membrane-bound silica deposition vesicles and exocytosed after completion. How diatoms maintain membrane homeostasis during the exocytosis of these large and rigid silica elements remains unknown. Here we study the membrane dynamics during cell wall formation and exocytosis in two model diatom species, using live-cell confocal microscopy, transmission electron microscopy and cryo-electron tomography. Our results show that during its formation, the mineral phase is in tight association with the silica deposition vesicle membranes, which form a precise mold of the delicate geometrical patterns. We find that during exocytosis, the distal silica deposition vesicle membrane and the plasma membrane gradually detach from the mineral and disintegrate in the extracellular space, without any noticeable endocytic retrieval or extracellular repurposing. We demonstrate that within the cell, the proximal silica deposition vesicle membrane becomes the new barrier between the cell and its environment, and assumes the role of a new plasma membrane. These results provide direct structural observations of diatom silica exocytosis, and point to an extraordinary mechanism in which membrane homeostasis is maintained by discarding, rather than recycling, significant membrane patches.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Pared Celular/metabolismo , Orgánulos/metabolismo , Dióxido de Silicio/química , Exocitosis
7.
FEBS Lett ; 597(9): 1233-1245, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36445168

RESUMEN

Prolonged metabolic stress can lead to severe pathologies. In metabolically challenged primary fibroblasts, we assigned a novel role for the poorly characterized miR-4734 in restricting ATF4 and IRE1-mediated upregulation of a set of proinflammatory cytokines and endoplasmic reticulum stress-associated genes. Conversely, inhibition of this miRNA augmented the expression of those genes. Mechanistically, miR-4734 was found to restrict the expression of the transcriptional activator NF-kappa-B inhibitor zeta (NFKBIZ), which is required for optimal expression of the proinflammatory genes and whose mRNA is targeted directly by miR-4734. Concordantly, overexpression of NFKBIZ compromised the effects of miR-4734, underscoring the importance of this direct targeting. As the effects of miR-4734 were evident under stress but not under basal conditions, it may possess therapeutic utility towards alleviating stress-induced pathologies.


Asunto(s)
MicroARNs , Citocinas/genética , Citocinas/metabolismo , Estrés del Retículo Endoplásmico/genética , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba , Humanos
8.
Nucleic Acids Res ; 50(20): 11426-11441, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350614

RESUMEN

RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Existing computational tools for rG4 prediction rely on specific sequence features and/or were trained on small datasets, without considering rG4 stability information, and are therefore sub-optimal. Here, we developed rG4detector, a convolutional neural network to identify potential rG4s in transcriptomics data. rG4detector outperforms existing methods in both predicting rG4 stability and in detecting rG4-forming sequences. To demonstrate the biological-relevance of rG4detector, we employed it to study RNAs that are bound by the RNA-binding protein G3BP1. G3BP1 is central to the induction of stress granules (SGs), which are cytoplasmic biomolecular condensates that form in response to a variety of cellular stresses. Unexpectedly, rG4detector revealed a dynamic enrichment of rG4s bound by G3BP1 in response to cellular stress. In addition, we experimentally characterized G3BP1 cross-talk with rG4s, demonstrating that G3BP1 is a bona fide rG4-binding protein and that endogenous rG4s are enriched within SGs. Furthermore, we found that reduced rG4 availability impairs SG formation. Hence, we conclude that rG4s play a direct role in SG biology via their interactions with RNA-binding proteins and that rG4detector is a novel useful tool for rG4 transcriptomics data analyses.


Asunto(s)
G-Cuádruplex , Proteínas de Unión al ARN , Gránulos de Estrés , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
EMBO Rep ; 23(7): e54755, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35642585

RESUMEN

Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.


Asunto(s)
Vesículas Extracelulares , Malaria , Parásitos , Animales , Eritrocitos/parasitología , Vesículas Extracelulares/metabolismo , Humanos , Plasmodium falciparum
10.
Nat Microbiol ; 6(11): 1357-1366, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697459

RESUMEN

Phytoplankton are key components of the oceanic carbon and sulfur cycles1. During bloom events, some species can emit large amounts of the organosulfur volatile dimethyl sulfide (DMS) into the ocean and consequently the atmosphere, where it can modulate aerosol formation and affect climate2,3. In aquatic environments, DMS plays an important role as a chemical signal mediating diverse trophic interactions. Yet, its role in microbial predator-prey interactions remains elusive with contradicting evidence for its role in either algal chemical defence or in the chemo-attraction of grazers to prey cells4,5. Here we investigated the signalling role of DMS during zooplankton-algae interactions by genetic and biochemical manipulation of the algal DMS-generating enzyme dimethylsulfoniopropionate lyase (DL) in the bloom-forming alga Emiliania huxleyi6. We inhibited DL activity in E. huxleyi cells in vivo using the selective DL-inhibitor 2-bromo-3-(dimethylsulfonio)-propionate7 and overexpressed the DL-encoding gene in the model diatom Thalassiosira pseudonana. We showed that algal DL activity did not serve as an anti-grazing chemical defence but paradoxically enhanced predation by the grazer Oxyrrhis marina and other microzooplankton and mesozooplankton, including ciliates and copepods. Consumption of algal prey with induced DL activity also promoted O. marina growth. Overall, our results demonstrate that DMS-mediated grazing may be ecologically important and prevalent during prey-predator dynamics in aquatic ecosystems. The role of algal DMS revealed here, acting as an eat-me signal for grazers, raises fundamental questions regarding the retention of its biosynthetic enzyme through the evolution of dominant bloom-forming phytoplankton in the ocean.


Asunto(s)
Diatomeas/fisiología , Haptophyta/metabolismo , Fitoplancton/fisiología , Sulfuros/metabolismo , Zooplancton/fisiología , Animales , Ecosistema , Eutrofización , Haptophyta/crecimiento & desarrollo , Agua de Mar/microbiología , Agua de Mar/parasitología
11.
Front Med (Lausanne) ; 8: 711810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490300

RESUMEN

In the mammalian female, only a small subset of ovarian follicles, known as the dominant follicles (DFs), are selected for ovulation in each reproductive cycle, while the majority of the follicles and their resident oocytes are destined for elimination. This study aimed at characterizing early changes in blood vessel properties upon the establishment of dominance in the mouse ovary and application of this vascular phenotype for prediction of the follicles destined to ovulate. Sexually immature mice, hormonally treated for induction of ovulation, were imaged at three different stages by dynamic contrast-enhanced (DCE) MRI: prior to hormonal administration, at the time of DF selection, and upon formation of the corpus luteum (CL). Macromolecular biotin-bovine serum albumin conjugated with gadolinium-diethylenetriaminepentaacetic acid (b-BSA-GdDTPA) was intravenously injected, and the dynamics of its extravasation from permeable vessels as well as its accumulation in the antral cavity of the ovarian follicles was followed by consecutive T1-weighted MRI. Permeability surface area product (permeability) and fractional blood volume (blood volume) were calculated from b-BSA-GdDTPA accumulation. We found that the neo-vasculature during the time of DF selection was characterized by low blood volume and low permeability values as compared to unstimulated animals. Interestingly, while the vasculature of the CL showed higher blood volume compared to the DF, it exhibited a similar permeability. Taking advantage of immobilized ovarian imaging, we combined DCE-MRI and intravital light microscopy, to reveal the vascular properties of follicles destined for dominance from the non-ovulating subordinate follicles (SFs). Immediately after their selection, permeability of the vasculature of DF was attenuated compared to SF while the blood volume remained similar. Furthermore, DFs were characterized by delayed contrast enhancement in the avascular follicular antrum, reflecting interstitial convection, whereas SFs were not. In this study, we showed that although DF selection is accompanied by blood vessel growth, the new vasculature remained relatively impermeable compared to the vasculature in control animal and compared to SF. Additionally, DFs show late signal enhancement in their antrum. These two properties may aid in clinical prediction of follicular dominance at an early stage of development and help in their diagnosis for possible treatment of infertility.

12.
Mol Psychiatry ; 26(11): 6149-6158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34349224

RESUMEN

The COVID-19 pandemic poses multiple psychologically stressful challenges and is associated with an increased risk for mental illness. Previous studies have focused on the psychopathological symptoms associated with the outbreak peak. Here, we examined the behavioural and mental-health impact of the pandemic in Israel using an online survey, during the six weeks encompassing the end of the first outbreak and the beginning of the second. We used clinically validated instruments to assess anxiety- and depression-related emotional distress, symptoms, and coping strategies, as well as questions designed to specifically assess COVID-19-related concerns. Higher emotional burden was associated with being female, younger, unemployed, living in high socioeconomic status localities, having prior medical conditions, encountering more people, and experiencing physiological symptoms. Our findings highlight the environmental context and its importance in understanding individual ability to cope with the long-term stressful challenges of the pandemic.


Asunto(s)
COVID-19 , Ansiedad/epidemiología , Depresión/epidemiología , Brotes de Enfermedades , Femenino , Humanos , Pandemias , SARS-CoV-2 , Estrés Psicológico/epidemiología
13.
Nat Commun ; 12(1): 4851, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381047

RESUMEN

Pathogens are thought to use host molecular cues to control when to initiate life-cycle transitions, but these signals are mostly unknown, particularly for the parasitic disease malaria caused by Plasmodium falciparum. The chemokine CXCL10 is present at high levels in fatal cases of cerebral malaria patients, but is reduced in patients who survive and do not have complications. Here we show a Pf 'decision-sensing-system' controlled by CXCL10 concentration. High CXCL10 expression prompts P. falciparum to initiate a survival strategy via growth acceleration. Remarkably, P. falciparum inhibits CXCL10 synthesis in monocytes by disrupting the association of host ribosomes with CXCL10 transcripts. The underlying inhibition cascade involves RNA cargo delivery into monocytes that triggers RIG-I, which leads to HUR1 binding to an AU-rich domain of the CXCL10 3'UTR. These data indicate that when the parasite can no longer keep CXCL10 at low levels, it can exploit the chemokine as a cue to shift tactics and escape.


Asunto(s)
Quimiocina CXCL10/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Regiones no Traducidas 3' , Quimiocina CXCL10/genética , Proteína 58 DEAD Box/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Vesículas Extracelulares/metabolismo , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Malaria Falciparum/inmunología , Monocitos/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Biosíntesis de Proteínas , ARN Protozoario/metabolismo , Receptores Inmunológicos/metabolismo , Ribosomas/metabolismo , Células THP-1
14.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203408

RESUMEN

TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show that TENT4A regulates mRNA stability and/or translation of DNA polymerase η and RAD18 E3 ligase, which guides the polymerase to replication stalling sites and monoubiquitinates PCNA, thereby enabling recruitment of error-prone DNA polymerases to damaged DNA sites. Remarkably, in addition to the effect on RAD18 mRNA stability via controlling its poly(A) tail, TENT4A indirectly regulates RAD18 via the tumor suppressor CYLD and via the long non-coding antisense RNA PAXIP1-AS2, which had no known function. Knocking down the expression of TENT4A or CYLD, or overexpression of PAXIP1-AS2 led each to reduced amounts of the RAD18 protein and DNA polymerase η, leading to reduced TLS, highlighting PAXIP1-AS2 as a new TLS regulator. Bioinformatics analysis revealed that TLS error-prone DNA polymerase genes and their TENT4A-related regulators are frequently mutated in endometrial cancer genomes, suggesting that TLS is dysregulated in this cancer.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias Endometriales/metabolismo , Mutación/genética , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/metabolismo , Western Blotting , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Biología Computacional , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Neoplasias Endometriales/genética , Femenino , Células HEK293 , Humanos , Inmunoprecipitación , Células MCF-7 , Reacción en Cadena de la Polimerasa , Polinucleotido Adenililtransferasa/genética , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , ARN Mensajero/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética , Ubiquitinación/fisiología
15.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088837

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Fibrosis , Mutación Missense , Neoplasias Pancreáticas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
16.
Antioxidants (Basel) ; 10(6)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067277

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. To date, the etiology of the disease is still unclear, with evidence of reactive oxygen species, mitochondrial dysfunction, iron homeostasis perturbation, protein misfolding and protein aggregation as key players in the pathology of the disease. Twenty percent of familial ALS and two percent of sporadic ALS instances are due to a mutation in Cu/Zn superoxide dismutase (SOD1). Sporadic and familial ALS affects the same neurons with similar pathology; therefore, the underlying hypothesis is that therapies effective in mutant SOD1 models could be translated to sporadic ALS. Corrole metal complexes have lately been identified as strong and potent catalytic antioxidants with beneficial effects in oxidative stress-related diseases such as Parkinson's disease, Alzheimer's disease, atherosclerosis, diabetes and its complications. One of the most promising candidates is the iron complex of an amphiphilic corrole, 1-Fe. In this study we used the SOD1 G93R mutant zebrafish ALS model to assess whether 1-Fe, as a potent catalytic antioxidant, displays any therapeutic merits in vivo. Our results show that 1-Fe caused a substantial increase in mutant zebrafish locomotor activity (up to 30%), bringing the locomotive abilities of the mutant treated group close to that of the wild type untreated group (50% more than the mutated untreated group). Furthermore, 1-Fe did not affect WT larvae locomotor activity, suggesting that 1-Fe enhances locomotor ability by targeting mechanisms underlying SOD1 ALS specifically. These results may pave the way for future development of 1-Fe as a viable treatment for ALS.

17.
Sci Rep ; 11(1): 11798, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083584

RESUMEN

Recent studies suggest immune function dysregulation in depression and anxiety disorders. Elevated pro-inflammatory cytokines may be a marker for immune system dysregulation. No study assessed the correlation between the levels of cytokines in children and adolescents with depression/anxiety disorders and their parents. In this study, 92 children and adolescents (mean age 13.90 ± 2.41 years) with depression and/or anxiety disorders were treated with fluoxetine. Blood samples were collected before initiation of treatment. One hundred and sixty-four of their parents (mean age 50.6 ± 6.2 years) and 25 parents of healthy children (mean age 38.5 ± 6.2 years) also gave blood samples. Plasma levels of three pro-inflammatory cytokine (TNF-α, IL-6, IL-1ß) were measured by enzyme linked immunosorbent assays (ELISA) and compared between depressed/anxious children and their parents. We also compared cytokine levels between parents of children with depression/anxiety and control parents. Mothers of depressed children had higher TNF-α levels than mothers of controls. No significant difference was detected in the fathers. A positive correlation was found between the IL-1ß levels of the depressed/anxious boys and their mothers. No such correlation was observed in the fathers. Our conclusions are that higher levels of proinflammatory cytokines may indicate immune system activation in mothers in response to the distress associated with having depressed/anxious offspring. The correlation between IL-1ß levels in the mothers and their depressed/anxious children may indicate familial vulnerability to depression and anxiety. Our observation highlights the need for a better understanding of sexual dimorphism in inflammatory responses to stress.


Asunto(s)
Ansiedad/sangre , Ansiedad/psicología , Citocinas/sangre , Depresión/sangre , Depresión/psicología , Mediadores de Inflamación/sangre , Adolescente , Adulto , Biomarcadores , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Nature ; 592(7852): 138-143, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33731925

RESUMEN

A variety of species of bacteria are known to colonize human tumours1-11, proliferate within them and modulate immune function, which ultimately affects the survival of patients with cancer and their responses to treatment12-14. However, it is not known whether antigens derived from intracellular bacteria are presented by the human leukocyte antigen class I and II (HLA-I and HLA-II, respectively) molecules of tumour cells, or whether such antigens elicit a tumour-infiltrating T cell immune response. Here we used 16S rRNA gene sequencing and HLA peptidomics to identify a peptide repertoire derived from intracellular bacteria that was presented on HLA-I and HLA-II molecules in melanoma tumours. Our analysis of 17 melanoma metastases (derived from 9 patients) revealed 248 and 35 unique HLA-I and HLA-II peptides, respectively, that were derived from 41 species of bacteria. We identified recurrent bacterial peptides in tumours from different patients, as well as in different tumours from the same patient. Our study reveals that peptides derived from intracellular bacteria can be presented by tumour cells and elicit immune reactivity, and thus provides insight into a mechanism by which bacteria influence activation of the immune system and responses to therapy.


Asunto(s)
Antígenos Bacterianos/análisis , Antígenos Bacterianos/inmunología , Bacterias/inmunología , Antígenos HLA/inmunología , Melanoma/inmunología , Melanoma/microbiología , Péptidos/análisis , Péptidos/inmunología , Presentación de Antígeno , Bacterias/clasificación , Bacterias/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Antígenos HLA/análisis , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patología , Metástasis de la Neoplasia/inmunología , Filogenia , ARN Ribosómico 16S/genética
19.
Nat Commun ; 12(1): 1172, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608523

RESUMEN

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins ß-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.


Asunto(s)
Transporte Biológico/fisiología , Eritrocitos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Citoesqueleto/metabolismo , Eritrocitos/citología , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Proteínas de la Membrana/metabolismo , Fosforilación , Plasmodium falciparum/crecimiento & desarrollo , Proteómica
20.
Front Cell Infect Microbiol ; 11: 739628, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155269

RESUMEN

Extracellular vesicles (EVs) are produced by across almost all the living kingdoms and play a crucial role in cell-cell communication processes. EVs are especially important for pathogens, as Plasmodium falciparum (Pf) parasite, the leading causing species in human malaria. Malaria parasites are able to modulate the host immune response from a distance via delivering diverse cargo components inside the EVs, such as proteins and nucleic acids. We have previously shown that imaging flow cytometry (IFC) can be effectively used to monitor the uptake of different cargo components of malaria derived EVs by host human monocytes. Here, we take this approach one step further and demonstrate that we can directly investigate the dynamics of the cargo distribution pattern over time by monitoring its distribution within two different recipient cells of the immune system, monocytes vs macrophages. By staining the RNA cargo of the vesicles and monitor the signal we were able to evaluate the kinetics of its delivery and measure different parameters of the cargo's distribution post internalization. Interestingly, we found that while the level of the EV uptake is similar, the pattern of the signal for RNA cargo distribution is significantly different between these two recipient immune cells. Our results demonstrate that this method can be applied to study the distribution dynamics of the vesicle cargo post uptake to different types of cells. This can benefit significantly to our understanding of the fate of cargo components post vesicle internalization in the complex interface between pathogen-derived vesicles and their host recipient cells.


Asunto(s)
Vesículas Extracelulares , Monocitos , Comunicación Celular/genética , Vesículas Extracelulares/metabolismo , Humanos , Macrófagos , Monocitos/metabolismo , ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...